Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404018, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593269

RESUMO

Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid-liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility to modulate it with drugs. Here we present Taylor dispersion-induced phase separation (TDIPS), a method to robustly measure condensation phenomena using a commercially available microfluidic platform. It uses only nanoliters of sample, does not require extrinsic fluorescent labels, and is straightforward to implement. We demonstrate TDIPS by screening the phase behaviour of two proteins that form biomolecular condensates in vivo, PGL-3 and Ddx4. Uniquely accessible to this method, we find an unexpected re-entrant behaviour at very low ionic strength, where LLPS is inhibited for both proteins. TDIPS can also probe the reversibility of assemblies, which was shown for both α-synuclein and for lysozyme, relevant for health and biotechnology, respectively. Finally, we highlight how effective inhibition concentrations and partitioning of LLPS-modifying compounds can be screened highly efficiently.

2.
Nat Chem ; 14(4): 407-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165426

RESUMO

It has long been proposed that phase-separated compartments can provide a basis for the formation of cellular precursors in prebiotic environments. However, we know very little about the properties of coacervates formed from simple peptides, their compatibility with ribozymes or their functional significance. Here we assess the conditions under which functional ribozymes form coacervates with simple peptides. We find coacervation to be most robust when transitioning from long homopeptides to shorter, more pre-biologically plausible heteropeptides. We mechanistically show that these RNA-peptide coacervates display peptide-dependent material properties and cofactor concentrations. We find that the interspacing of cationic and neutral amino acids increases RNA mobility, and we use isothermal calorimetry to reveal sequence-dependent Mg2+ partitioning, two critical factors that together enable ribozyme activity. Our results establish how peptides of limited length, homogeneity and charge density facilitate the compartmentalization of active ribozymes into non-gelating, magnesium-rich coacervates, a scenario that could be applicable to cellular precursors with peptide-dependent functional phenotypes.


Assuntos
RNA Catalítico , Magnésio/química , Peptídeos/química , RNA/química , RNA Catalítico/metabolismo
3.
Nat Phys ; 17(8): 920-925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777551

RESUMO

Oocytes are large cells that develop into an embryo upon fertilization1. As interconnected germ cells mature into oocytes, some of them grow-typically at the expense of others that undergo cell death2-4. We present evidence that in the nematode Caenorhabditis elegans, this cell-fate decision is mechanical and related to tissue hydraulics. An analysis of germ cell volumes and material fluxes identifies a hydraulic instability that amplifies volume differences and causes some germ cells to grow and others to shrink, a phenomenon that is related to the two-balloon instability5. Shrinking germ cells are extruded and they die, as we demonstrate by artificially reducing germ cell volumes via thermoviscous pumping6. Our work reveals a hydraulic symmetry-breaking transition central to the decision between life and death in the nematode germline.

4.
Soft Matter ; 17(47): 10744-10752, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34787626

RESUMO

Biomechanical changes are critical for cancer progression. However, the relationship between the rheology of single cells measured ex-vivo and the living tumor is not yet understood. Here, we combined single-cell rheology of cells isolated from primary tumors with in vivo bulk tumor rheology in patients with brain tumors. Eight brain tumors (3 glioblastoma, 3 meningioma, 1 astrocytoma, 1 metastasis) were investigated in vivo by magnetic resonance elastography (MRE), and after surgery by the optical stretcher (OS). MRE was performed in a 3-Tesla clinical MRI scanner and magnitude modulus |G*|, loss angle φ, storage modulus G', and loss modulus G'' were derived. OS experiments measured cellular creep deformation in response to laser-induced step stresses. We used a Kelvin-Voigt model to deduce two parameters related to cellular stiffness (µKV) and cellular viscosity (ηKV) from OS measurements in a time regimen that overlaps with that of MRE. We found that single-cell µKV was correlated with |G*| (R = 0.962, p < 0.001) and G'' (R = 0.883, p = 0.004) but not G' of the bulk tissue. These results suggest that single-cell stiffness affects tissue viscosity in brain tumors. The observation that viscosity parameters of individual cells and bulk tissue were not correlated suggests that collective mechanical interactions (i.e. emergent effects or cellular unjamming) of many cancer cells, which depend on cellular stiffness, influence the mechanical dissipation behavior of the bulk tissue. Our results are important to understand the emergent rheology of active multiscale compound materials such as brain tumors and its role in disease progression.


Assuntos
Neoplasias Encefálicas , Técnicas de Imagem por Elasticidade , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Elasticidade , Humanos , Imageamento por Ressonância Magnética , Reologia , Viscosidade
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507991

RESUMO

Membraneless compartments, also known as condensates, provide chemically distinct environments and thus spatially organize the cell. A well-studied example of condensates is P granules in the roundworm Caenorhabditis elegans that play an important role in the development of the germline. P granules are RNA-rich protein condensates that share the key properties of liquid droplets such as a spherical shape, the ability to fuse, and fast diffusion of their molecular components. An outstanding question is to what extent phase separation at thermodynamic equilibrium is appropriate to describe the formation of condensates in an active cellular environment. To address this question, we investigate the response of P granule condensates in living cells to temperature changes. We observe that P granules dissolve upon increasing the temperature and recondense upon lowering the temperature in a reversible manner. Strikingly, this temperature response can be captured by in vivo phase diagrams that are well described by a Flory-Huggins model at thermodynamic equilibrium. This finding is surprising due to active processes in a living cell. To address the impact of such active processes on intracellular phase separation, we discuss temperature heterogeneities. We show that, for typical estimates of the density of active processes, temperature represents a well-defined variable and that mesoscopic volume elements are at local thermodynamic equilibrium. Our findings provide strong evidence that P granule assembly and disassembly are governed by phase separation based on local thermal equilibria where the nonequilibrium nature of the cytoplasm is manifested on larger scales.


Assuntos
Condensados Biomoleculares/fisiologia , Grânulos de Ribonucleoproteínas de Células Germinativas/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Entropia , Grânulos de Ribonucleoproteínas de Células Germinativas/metabolismo , Células Germinativas/metabolismo , Solubilidade , Temperatura , Termodinâmica
6.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32359423

RESUMO

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/fisiologia , Expressão Gênica/genética , Genes Essenciais/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
7.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32050025

RESUMO

Centrosomes must resist microtubule-mediated forces for mitotic chromosome segregation. During mitotic exit, however, centrosomes are deformed and fractured by those same forces, which is a key step in centrosome disassembly. How the functional material properties of centrosomes change throughout the cell cycle, and how they are molecularly tuned, remain unknown. Here, we used optically induced flow perturbations to determine the molecular basis of centrosome strength and ductility in C. elegans embryos. We found that both properties declined sharply at anaphase onset, long before natural disassembly. This mechanical transition required PP2A phosphatase and correlated with inactivation of PLK-1 (Polo kinase) and SPD-2 (Cep192). In vitro, PLK-1 and SPD-2 directly protected centrosome scaffolds from force-induced disassembly. Our results suggest that, before anaphase, PLK-1 and SPD-2 respectively confer strength and ductility to the centrosome scaffold so that it can resist microtubule-pulling forces. In anaphase, centrosomes lose PLK-1 and SPD-2 and transition to a weak, brittle state that enables force-mediated centrosome disassembly.


Assuntos
Caenorhabditis elegans/citologia , Centrossomo/metabolismo , Mitose , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Centrossomo/efeitos dos fármacos , Leupeptinas/farmacologia , Mitose/efeitos dos fármacos , Mitose/genética
8.
Nat Chem Biol ; 15(1): 51-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531905

RESUMO

Liquid-liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Acetilação , Animais , Domínio Catalítico , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/metabolismo , Técnicas de Inativação de Genes , Desacetilase 6 de Histona/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Lisina/metabolismo , Camundongos , Modelos Teóricos , Pressão Osmótica , RNA Helicases/genética
9.
Nat Cell Biol ; 20(3): 344-351, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29403036

RESUMO

Recent advances in cell biology enable precise molecular perturbations. The spatiotemporal organization of cells and organisms, however, also depends on physical processes such as diffusion or cytoplasmic flows, and strategies to perturb physical transport inside cells are not yet available. Here, we demonstrate focused-light-induced cytoplasmic streaming (FLUCS). FLUCS is local, directional, dynamic, probe-free, physiological, and is even applicable through rigid egg shells or cell walls. We explain FLUCS via time-dependent modelling of thermoviscous flows. Using FLUCS, we demonstrate that cytoplasmic flows drive partitioning-defective protein (PAR) polarization in Caenorhabditis elegans zygotes, and that cortical flows are sufficient to transport PAR domains and invert PAR polarity. In addition, we find that asymmetric cell division is a binary decision based on gradually varying PAR polarization states. Furthermore, the use of FLUCS for active microrheology revealed a metabolically induced fluid-to-solid transition of the yeast cytoplasm. Our findings establish how a wide range of transport-dependent models of cellular organization become testable by FLUCS.


Assuntos
Caenorhabditis elegans/fisiologia , Corrente Citoplasmática , Análise de Célula Única/métodos , Zigoto/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Corrente Citoplasmática/efeitos da radiação , Raios Infravermelhos , Lasers , Modelos Biológicos , Fenótipo , Reologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/instrumentação , Fatores de Tempo , Zigoto/citologia , Zigoto/metabolismo , Zigoto/efeitos da radiação
10.
Opt Express ; 23(4): 5221-35, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836555

RESUMO

In dual-beam optical traps, two counterpropagating, divergent laser beams emitted from opposing laser fibers trap and manipulate dielectric particles. We investigate the lensing effect that trapped particles have on the beams. Our approach makes use of the intrinsic coupling of a beam to the opposing fiber after having passed the trapped particle. We present measurements of this coupling signal for PDMS particles, as well as a model for its dependence on size and refractive index of the trapped particle. As a more complex sample, the coupling of inhomogeneous biological cells is measured and discussed. We show that the lensing effect is well captured by the simple ray optics approximation. The measurements reveal intricate details, such as the thermal lens effect of the beam propagation in a dual-beam trap. For a particle of known size, the model further allows to infer its refractive index simply from the coupling signal.

11.
Acta Ophthalmol ; 93(5): e328-e336, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25516112

RESUMO

PURPOSE: To determine the visco-elastic properties of isolated rabbit scleral tissue and dose-dependent biomechanical and morphological changes after collagen cross-linking by riboflavin/blue light treatment. MATERIAL: Scleral patches from 87 adult albino rabbit eyes were examined by dynamic shear rheology. Scleral patches were treated by riboflavin and different intensities of blue light (450 nm), and the impact on the visco-elastic properties was determined by various rheological test regimes. The relative elastic modulus was calculated from non-treated and corresponding treated scleral patches, and treatments with different blue light intensities were compared. RESULTS: Shear rheology enables us to study the material properties of scleral tissue within physiological relevant parameters. Cross-linking treatment increased the viscous as well as the elastic modulus and changed the ratio of the elastic versus viscous proportion in scleral tissue. Constant riboflavin application combined with different blue light intensities from 12 mW/cm(2) up to 100 mW/cm(2) increased the relative elastic modulus of scleral tissue by factors up to 1.8. Further enhancement of the applied light intensity caused a decline of the relative elastic modulus. This might be due to destructive changes of the collagen bundle structure at larger light intensities, as observed by histological examination. CONCLUSION: Collagen cross-linking by riboflavin/blue light application increases the biomechanical stiffness of the sclera in a dose-dependent manner up to certain light intensities. Therefore, this treatment might be a suitable therapeutic approach to stabilize the biomechanical properties of scleral tissue in cases of pathological eye expansion.


Assuntos
Colágeno/metabolismo , Reagentes de Ligações Cruzadas , Módulo de Elasticidade/fisiologia , Luz , Riboflavina/farmacologia , Esclera/efeitos dos fármacos , Esclera/metabolismo , Animais , Fenômenos Biomecânicos , Relação Dose-Resposta à Radiação , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Coelhos , Reologia
12.
Eur Biophys J ; 43(1): 11-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196420

RESUMO

Investigations of active contractions in tissue cells to date have been focused on cells that exert forces via adhesion sites to substrates or to other cells. In this study we show that also suspended epithelial cells exhibit contractility, revealing that contractions can occur independently of focal adhesions. We employ the Optical Stretcher to measure adhesion-independent mechanical properties of an epithelial cell line transfected with a heat-sensitive cation channel. During stretching the heat transferred to the ion channel causes a pronounced Ca(2+) influx through the plasma membrane that can be blocked by adequate drugs. This way the contractile forces in suspended cells are shown to be partially triggered by Ca(2+) signaling. A phenomenological mathematical model is presented, incorporating a term accounting for the active stress exerted by the cell, which is both necessary and sufficient to describe the observed increase in strain when the Ca(2+) influx is blocked. The median and the shape of the strain distributions depend on the activity of the cells. Hence, it is unlikely that they can be described by a simple Gaussian or log normal distribution, but depend on specific cellular properties such as active contractions. Our results underline the importance of considering activity when measuring cellular mechanical properties even in the absence of measurable contractions. Thus, the presented method to quantify active contractions of suspended cells offers new perspectives for a better understanding of cellular force generation with possible implications for medical diagnosis and therapy.


Assuntos
Células Epiteliais/fisiologia , Modelos Biológicos , Movimento (Física) , Miosinas/metabolismo , Cálcio/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Quinase de Cadeia Leve de Miosina/metabolismo , Estresse Mecânico , Canais de Cátion TRPV/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(46): 18507-12, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24167274

RESUMO

Cell motility and cell shape adaptations are crucial during wound healing, inflammation, and malignant progression. These processes require the remodeling of the keratin cytoskeleton to facilitate cell-cell and cell-matrix adhesion. However, the role of keratins for biomechanical properties and invasion of epithelial cells is only partially understood. In this study, we address this issue in murine keratinocytes lacking all keratins on genome engineering. In contrast to predictions, keratin-free cells show about 60% higher cell deformability even for small deformations. This response is compared with the less pronounced softening effects for actin depolymerization induced via latrunculin A. To relate these findings with functional consequences, we use invasion and 3D growth assays. These experiments reveal higher invasiveness of keratin-free cells. Reexpression of a small amount of the keratin pair K5/K14 in keratin-free cells reverses the above phenotype for the invasion but does not with respect to cell deformability. Our data show a unique role of keratins as major players of cell stiffness, influencing invasion with implications for epidermal homeostasis and pathogenesis. This study supports the view that down-regulation of keratins observed during epithelial-mesenchymal transition directly contributes to the migratory and invasive behavior of tumor cells.


Assuntos
Movimento Celular/fisiologia , Forma Celular/fisiologia , Queratinas/metabolismo , Invasividade Neoplásica/fisiopatologia , Pele/citologia , Animais , Fenômenos Biomecânicos , Ensaio de Unidades Formadoras de Colônias , Transição Epitelial-Mesenquimal/fisiologia , Imunofluorescência , Engenharia Genética/métodos , Indóis , Queratinas/genética , Camundongos , Vinculina
14.
J Mech Behav Biomed Mater ; 9: 113-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22498289

RESUMO

Liver fibrosis is a reversible pathology characterized by the up-regulated secretion and deposition of ECM proteins and inhibitors of metalloproteinases, which increase the stiffness and viscosity of this organ. Since recent studies have shown that fibrosis preceded the generation of hepatocellular carcinomas, we hypothesize that liver fibrosis could play a role as a mechanism for restricting uncontrolled cell proliferation, inducing the mortality of cancer cells and subsequent development of primary tumours. With this purpose, in this work we analysed in vitro how the modulation of stiffness can influence proliferation, viability and aggregation of hepatocarcinoma cells (HepG(2)) embedded in 3D micromilieus mimicking values of elasticity of fibrotic liver tissues. Experiments were performed by immobilizing up to 10 HepG(2) cells within microcapsules made of 0.8%, 1.0% and 1.4% w/v alginate which, besides having values of elasticity from the lower-healthy to the upper-fibrotic range liver tissues, lacked domains for proteases, mimicking the micromilieu existing in hepatic primary tumours. Our results show that entrapped cells exhibited a short duplication phase followed by an irreversible decay stage, in which cell mortality could be mediated by two mechanisms: mechanical stress, in the case of cells entrapped in a stiffer micromilieu; and mass transfer limitations produced by pore coarsening at the interface cell-matrix, in softer micromilieus. According to the authors' knowledge, this work represents the first attempt to elucidate the role of liver fibrosis during Hepatocarcinoma pathologies, suggesting that the generation of a non-biodegradable and mechanically unfavourable environment surrounding cancer cells could control the proliferation, migration of metastatic cells and the subsequent development of primary tumours.


Assuntos
Cápsulas/química , Fígado/metabolismo , Alginatos/química , Proliferação de Células , Módulo de Elasticidade , Fibrose/patologia , Ácido Glucurônico/química , Células Hep G2 , Ácidos Hexurônicos/química , Humanos , Técnicas In Vitro , Cinética , Fígado/patologia , Microscopia de Força Atômica/métodos , Microscopia Eletrônica/métodos , Metástase Neoplásica , Neoplasias/patologia , Probabilidade , Fatores de Tempo
15.
Opt Express ; 16(21): 16984-92, 2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-18852807

RESUMO

The optical cell rotator (OCR) is a modified dual-beam laser trap for the holding and controlled rotation of suspended dielectric microparticles, such as cells. In contrast to optical tweezers, OCR uses two counter-propagating divergent laser beams, which are shaped and delivered by optical fibers. The rotation of a trapped specimen is carried out by the rotation of a dual-mode fiber, emitting an asymmetric laser beam. Experiments were performed on human erythrocytes, promyelocytic leukemia cells (HL60), and cell clusters (MCF-7). Since OCR permits the rotation of cells around an axis perpendicular to the optical axis of any microscope and is fully decoupled from imaging optics, it could be a suitable and expedient tool for tomographic microscopy.


Assuntos
Separação Celular/instrumentação , Micromanipulação/instrumentação , Fibras Ópticas , Pinças Ópticas , Desenho de Equipamento , Análise de Falha de Equipamento , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...